Robustness in stochastic programming models
نویسندگان
چکیده
منابع مشابه
Stochastic Programming Models in Energy
We give the reader a tour of good energy optimization models that explicitly deal with uncertainty. The uncertainty usually stems from unpredictability of demand and/or prices of energy, or from resource availability and prices. Since most energy investments or operations involve irreversible decisions, a stochastic programming approach is meaningful. Many of the models deal with electricity in...
متن کاملModels and model value in stochastic programming
Finding optimal decisions often involves the consideration of certain random or unknown parameters. A standard approach is to replace the random parameters by the expectations and to solve a deterministic mathematical program. A second approach is to consider possible future scenarios and the decision that would be best under each of these scenarios. The question then becomes how to choose amon...
متن کاملSensitivity, robustness, and identifiability in stochastic chemical kinetics models.
We present a novel and simple method to numerically calculate Fisher information matrices for stochastic chemical kinetics models. The linear noise approximation is used to derive model equations and a likelihood function that leads to an efficient computational algorithm. Our approach reduces the problem of calculating the Fisher information matrix to solving a set of ordinary differential equ...
متن کاملDynamic Inventory Models and Stochastic Programming
A wide class of single-product, dynamic inventory problems with convex cost functions and a finite horizon is investigated as a stochastic programming problem. When demands have finite discrete distribution functions, we show that the problem can be substantially reduced in size to a linear program with upper-bounded variables. Moreover,, we show that the reduced problem has a network represent...
متن کاملRobust multicriteria risk-averse stochastic programming models
In this paper, we study risk-averse models for multicriteria optimization problems under uncertainty. We use a weighted sum-based scalarization and take a robust approach by considering a set of scalarization vectors to address the ambiguity and inconsistency in the relative weights of each criterion. We model the risk aversion of the decision makers via the concept of multivariate conditional ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Applied Mathematical Modelling
سال: 1993
ISSN: 0307-904X
DOI: 10.1016/0307-904x(93)90084-t